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Abstract

Global warming levels are a useful shorthand for describing possible climate futures. Warming
levels used by the Risk Team in the past span a variety of approaches but were poorly
documented and represented only a subset of CMIP6 data. Here we develop a new table of
yearly global mean surface temperatures for all CMIP6 data (models, members, scenarios)
available from Google Cloud that can be used to experiment with alternative warming level
calculation methods. We also evaluate different approaches of calculating and aggregating
warming year data. Finally, we present new tables of warming years that span models,
members, and scenarios and represent a much larger sample size than previous tables. These
warming year tables, in combination with a suite of custom functions, can be used in future Risk
Team analyses, particularly those focused on extreme values.

1. Introduction

Warming levels are defined as the amount of global temperature change since some baseline
period (typically representing pre-industrial conditions) and are a simple way of quantifying the
degree of climatic change. They are regularly used in policy and international climate
negotiation contexts and are a useful shorthand for communicating climate change impacts.
Some examples include the Paris Agreement setting the goal of keeping global warming well
below 2°C relative to pre-industrial conditions (UNFCCC, 2015), and preferably below 1.5°C,
and the Intergovernmental Panel on Climate Change (IPCC) special report on what a 1.5°C
warmer world would look like (IPCC, 2018). Warming levels can provide a useful discussion
framework since they may be more easily understood by nonscientific audiences and they avoid
getting mired in discussions of timelines and scenarios and instead focus on the end result.

The Woodwell Climate Risk Team has used warming levels to communicate climate risks, for
example in the maps for Probable Futures. The approach the Team has most often used is to
find, for each global climate model (hereafter model), the first 21 year period when global mean
surface temperature (GMST) exceeds the warming level of interest. Different climate metrics
can then be calculated from these 21 years of data. The so-called warming years calculated
using this approach are stored in the file monthly_models_thresholds_ssp585_v3.csv which is
available upon request.

This approach is straightforward but has several drawbacks. First, the methods used to create
the table are not well documented, making replication difficult to impossible. Second, the table
only includes warming years for a small portion of the available models, ensemble members
(also referred to as realizations), and scenarios available from CMIP6. Third, the use of the 21
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year window and just a subset of CMIP6 runs limits the available sample size from which to
assess extreme value statistics. Finally, the existing table is not conducive to experimentation
with other methods of calculating warming levels as it only provides the final answer, not the
intermediate data (i.e. GMST by year).

In the present work we aim to address these drawbacks. Our first objective is to create a
comprehensive table of GMST for each year and each model, ensemble member, and scenario
available from CMIP6. This will enable others to quickly experiment with different methods of
calculating warming levels. Our second objective is to evaluate a few different approaches for
calculating warming levels. This includes assessing the impacts of warming year aggregation
methods on resulting warming levels. Finally, we develop new warming year tables that can be
used in future work. Relevant code is available on GitHub at
https://github.com/WoodwellRisk/Warming_levels and datasets are available upon request from
the Woodwell Risk Team.

2. Previously used warming levels tables

There are three tables of warming levels that were previously used by the Risk Team. Each
table provides warming years for 27 models, for SSP585, for the following warming levels:
1.0°C, 1.5°C, 2.0°C, 2.5°C, 3.0°C, 3.5°C, 4.0°C, and 4.5°C. It is unclear what ensemble
members these data represent.

The warming year calculation methods for the three tables are described fully in the README
and the code used to generate the tables is available in
temperature_r_code_generate_CMIP6_year_temp_thresholds.R, both of which are available
from the Risk Team. Here I briefly describe the three versions.

In the first table (monthly_models_thresholds_ssp585_v1.csv), the warming year is the first year
in which GMST exceeds the warming level and does not drop below the warming level in
subsequent years. This approach works fine for the SSP585 scenario considered in the table,
but would not be useful for some warming levels when considering scenarios in which
temperatures peak and then decline.

In the second table (monthly_models_thresholds_ssp585_v2.csv), the warming year is the first
year in which GMST exceeds the warming level, regardless of temperatures in later years. This
approach is sensitive to climatic variability, since one hot year could exceed the warming level
long before this temperature is achieved on a regular basis.

In the third table (monthly_models_thresholds_ssp585_v3.csv), the warming year is the middle
year of the first 21 year period when time-averaged GMST exceeds the warming level. When
using this method in practice, there is the option of using all 21 years of the identified period
instead of just using the middle year. This approach is similar to other rolling window
approaches used in the literature (e.g. Seneviratne and Hauser, 2020).
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3. New GMST Table

Recently, CMIP6 data has become available through Google Cloud in zarr format. This source
offers many additional models, ensemble members, and scenarios than we currently have
stored locally. We developed a new table of GMST (°K) for each available year from 1850 to
2150 and for each model, member, and scenario available from Google Cloud. Model/member
combinations for which historical period data was not available were excluded. Additional
CMIP6 data that has been flagged for errors is also available from Google Cloud but was not
included in the GMST table. The table includes 1298 model/member/scenario combinations,
compared to only 27 in the existing tables. The table also includes the 1850 through 1900 mean
GMST, which is one way of quantifying pre-industrial temperature and can be used to calculate
warming. The first few lines of the table are shown in Figure 1 and the full table is available
upon request from the Risk Team. The GMST table should make calculating warming levels for
different models/members/scenarios or using new methods relatively easy.

GMST was calculated from monthly surface air temperature (tas) from the CMIP6 models.
Monthly tas was aggregated to annual tas using a weighted mean in which weights were based
on the number of days in the month. Annual tas values were then averaged using a spatially
weighted mean to arrive at GMST. The code used to calculate the GMST table is available in
the GitHub repository (create_GMST_table_from_zarr_data.ipynb).

Table 1. First 5 rows of the GMST table

As a check, we used the GMST table to recompute the warming years using the 21 year rolling
mean approach used in the third table described above for the models and members we were
able to identify the ensemble member for. One main difference is that the original table used
locally stored CMIP6 data, whereas the newly computed table used CMIP6 data from Google
Cloud. The difference in warming years between the old table and the new table is shown
below. The identified warming years were the same for all models except for FGOALS-g3, for
which the new warming years were 1 to 4 years later than the old warming years. The reasons
for the differences in the FGOALS-g3 warming years are not clear. The overlap between
historical and future scenarios in this model was accounted for in the new calculations, but it is
not clear whether this was accounted for in the old table. It is hard to pin down the reason
without knowing exactly which dataset the old warming years were calculated from.
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Table 2. Difference in warming years (new minus old) between the newly calculated warming
years based on Google Cloud data and the GMST table and the old warming years in
monthly_models_thresholds_ssp585_v3.csv. Both new and old years were calculated using the
21 year moving window approach.

4. General approaches for calculating warming levels

There are several general approaches to calculating warming levels, some of which are outlined
in James et al., (2017). Here we consider time sampling type approaches. The existing warming
level tables fall under this category: first year to exceed the warming level, first year to exceed
the warming level and not drop below it in subsequent years, and a temporal rolling mean
approach.

An additional approach that we consider is a temperature window approach, which identifies
years that are within some temperature range of the target warming level. This approach works
for all scenarios, including overshoot scenarios, and is not overly sensitive to climatic variability.
Although it is less common, this approach has been used for example by CSIRO to quantify
warming levels (see here). They selected years within +/- 0.2°C of the target warming level as
well as the five years before and after each of those years.
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We used the GMST table to identify all years within +/- 0.25°C of the warming level. Compared
to the 21 year moving window approach, this approach can result in a smaller or larger sample
size. For example, when looking at SSP585 for the models and members used for a previous
analysis called CERA, this approach identified between 7 and 27 years for each model for a
warming level of 1°C and between 10 and 16 years for each model for a warming level of 2°C
(Table 3) compared to the 21 years that would be identified using the 21 year moving window
approach. For a 2°C warming level, the mean warming years from this approach were similar to
those from the 21 year moving window approach (Table 3).

Table 3. Comparison of warming years from different approaches for the 17 model/member
combinations used in CERA for SSP585 for a 2°C warming level. The ‘original year’ column
shows the warming year from the existing table that uses the 21 year moving window approach
(monthly_models_thresholds_ssp585_v3.csv). The ‘new year’ column shows the mean warming
year calculated using the temperature window approach (all years with warming between
1.75°C and 2.25°C). The ‘year difference’ column shows the difference between the two
warming years. The ‘nyears’ column shows the number of years used in the ‘new year’
calculation.

5. Aggregation approaches
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Aggregation of warming years across models, ensemble members, or scenarios has been
suggested as a way to both increase sample size and account for uncertainty associated with
models, natural variability, and emissions pathways, respectively. Aggregation of model outputs
across multiple models (often referred to as the multi-model mean or ensemble mean) is a
common practice in climate science that has been shown to reduce bias relative to using
individual models (Tebaldi and Knutti, 2007). Aggregation across ensemble members,
particularly those reflecting different initial conditions, can be helpful to mute the effects of
natural internal climate variability (Deser et al., 2020). This may be particularly important when
using warming year calculation methods such as that used in
monthly_models_thresholds_ssp585_v2.csv (the warming year is the first year exceeding the
warming level).

Unlike aggregating across models or ensemble members, the concept of aggregating warming
years, or climate outputs more generally, across scenarios has more limited precedent in the
scientific literature. Therefore, we investigated this idea in more detail.

5.1 Aggregation across scenarios

As discussed in James et al., (2017), regional responses to a specific warming level might vary
with scenario “if regional change is sensitive to the rate of warming, lags in the climate system,
emissions reductions, or temperature overshoot.” Lags in the climate system are a relevant
consideration for glaciers, ice sheets, and sea level, as well as the elements that closely depend
on them, which might include regional temperature and precipitation. Periods during which CO2

is increasing and during which CO2 is decreasing may have the same GMST but with regional
contrasts (see citations in James et al., 2017). Finally, the higher temperatures achieved in
overshoot scenarios may entail irreversible changes in some elements that would not be
present in other scenarios at the same warming level (see citations in James et al., 2017)

Pendergrass et al., (2015) show that the amount of mean precipitation change per degree of
global warming does depend on emission scenario, with greater change found in lower
emissions scenarios (see their Figure 2a; see also Caesar et al., 2013). In contrast, they show
that the amount of change in extreme precipitation per degree warming is indistinguishable
across emissions scenarios (see their Figure 2b).

Tebaldi et al., (2021) present maps of normalized temperature and precipitation changes
(section 3.1.2, Figure 2) for a suite of models and scenarios. The normalized changes are
calculated as the change in temperature or precipitation between the end of the 21st century
and the historical baseline, divided by the change in GMST. They show that intermodel
variability exceeds interscenario variability for both temperature and precipitation (their Figure
2e-h), although they mention that internal variability could be contributing more to the intermodel
variability than to the interscenario variability.

Seneviratne and Hauser (2020) aggregate warming levels across scenarios in their comparison
of climate extremes from CMIP5 and CMIP6. They show that differences in annual hottest
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daytime temperature anomalies at different warming levels based on just SSP585 and based on
the combination of SSP119, SSP126, SSP245, and SSP370 are nonsignificant (see their
Section 3.1 and Figure S4). They do caution against using all available ensemble members
from each model however due to concerns about uneven model weighting (see their Section 3.1
and Figure S5).

Seneviratne et al., (2016) show that changes in temperature and precipitation extremes scale
with global warming with little difference between RCP4.5 and RCP8.5. Wartenburger et al.,
(2017) built on this to show that for CMIP5 changes in many climate indices (related to
temperature, precipitation, drought, etc) scale well with global warming regardless of scenario
(they considered RCP2.6, RCP4.5, RCP6.0, and RCP8.5; see their Figures 3 and 4).

Working Group 1 of the latest IPCC Assessment Report discusses this issue at some length
(IPCC AR6 WG1, Chapter 11, Cross-Chapter Box 11.1, pages 1542-1546, cited as Seneviratne
et al., 2021). Based on the latest literature they conclude that the climate response to a given
warming level is consistent across scenarios for many climate variables. They note greater
consistency for temperature related variables than for those related to hydrology or atmospheric
dynamics, and lower consistency for low emissions scenarios than other scenarios. They also
note that even for a pathway dependent variable such as mean precipitation (e.g. Pendergrass
et al., 2015), model uncertainty and internal variability are larger than scenario uncertainty for a
given warming level. In Figure 3 of Cross-Chapter Box 11.1 they provide an example of warming
level maps in which data was aggregated across models and scenarios. However, they
emphasize that using scenarios (as opposed to warming levels) is important for variables that a)
depend on radiative forcings such as aerosols or land use and land management, b) are time or
warming rate dependent (as discussed above), or c) differ between transient and equilibrium
states. They also caution that climate response at a given warming level in overshoot scenarios
may differ before and after overshoot.

Many studies which aggregate across scenarios use warming years calculated from a moving
window approach. CSIRO used a temperature window approach
(https://www.climatechangeinaustralia.gov.au/en/changing-climate/future-climate-scenarios/glob
al-warming-levels/) and mentioned that warming years can be aggregated across scenarios
(https://www.climatechangeinaustralia.gov.au/media/ccia/2.2/cms_page_media/585/Technical%20
Note%203%20-%20Global%20Warming%20Levels%20methods_1.pdf), although in the end they
chose to use a single scenario.

Based on the literature presented above, the overarching impression is that aggregating across
scenarios is acceptable and useful when variables are pathway (i.e. scenario) independent, but
not when variables are pathway dependent. This raises the question of how to define pathway
dependence and how much pathway dependence is too much. Some of the papers above
identified particular variables as being pathway dependent or independent. Identified pathway
dependent variables include global mean precipitation (although perhaps not regional mean
precipitation, see IPCC citation), slow responding elements of the cryosphere (glaciers, ice
sheets), and sea level rise. Pathway independent variables include temperature related
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variables, temperature and precipitation extremes, quick responding elements of the cryosphere
(sea ice area, permafrost, snow), some drought metrics, and soil moisture.

5.1.1 Comparison of temperature change across scenarios

We investigated differences in warming across scenarios for a given warming level by first
plotting maps of warming for each scenario in a 2°C world (Figure 1), as determined by the
temperature window approach (i.e. all years within +/-0.25°C of 2°C warming). We note that the
fact that warming levels may look different under different scenarios does not necessarily
invalidate the idea of aggregating across scenarios.

In order to provide the most direct comparison across scenarios, we only used model/member
combinations that provided data for the full 2015-2099 period and had data for all 8 scenarios.
Unfortunately, this restricted the analysis to one model (CNRM-ESM2-1) and five members.
Broad scale patterns of warming were consistent across scenarios; the Arctic experienced much
greater warming than other areas and land areas typically saw more warming than oceans
(Figure 1).

Using the same data, we calculated the range of warming at each grid location (warmest
scenario at that grid cell minus coldest scenario at that grid cell; Figure 2). The largest ranges of
warming (on the order of 1.5°C) were found in polar ocean regions, which may be due to
uncertainty in future sea ice extent as described in Tebaldi et al., (2021). The range of warming
over land areas was mostly less than 0.9°C.
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Figure 1. Warming in a 2°C world under different scenarios. Calculations are based only on the
model (n=1) and members (n=5) all scenarios had in common and used a temperature window
approach to warming year identification.
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Figure 2. Range (max minus min) of warming across scenarios in a 2°C world.

Using a leave-one-out experiment, SSP119 was found to be the scenario contributing the most
to global mean spread in warming in a 2°C world (Figure 3). This was further supported by
Figure 4, which shows the difference in warming in a 2°C world between each pair of scenarios.
SSP119 again stands out as having the largest contrasts with other scenarios, reaching 1°C in
some locations. The differences amongst the other scenarios were typically within +/- 0.25°C,
especially over land areas.

Figure 3. Range (max minus min) of warming across scenarios in a 2°C world with the scenario
indicated on the x-axis left out. Lower y values indicate that leaving that scenario out reduced
the scenario spread in warming.
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Figure 4. Difference in warming in a 2°C world for each pair of scenarios using the temperature
window approach. All scenarios use the same model and 5 members.

A brief comparison of warming across scenarios using the 21 year moving window approach is
shown in Figure 5. For this the same model and 5 ensemble members were used. The SSP119
scenario did not reach a 2°C warming level in any of the ensemble members and is therefore
excluded. The SSP126 scenario only reached 2°C in 3 of the 5 scenarios, so some of the
contrasts shown in Figure 5 can be attributed to the different ensemble used for SSP126
compared to the other scenarios.
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Figure 5. Difference in warming in a 2°C world for each pair of scenarios using the 21 year
moving window approach. All scenarios use the same model and 5 members, except SSP126
for which only 3 members reached 2°C.

5.1.1.1 Comparison of temperature standard deviation and 95th percentile
across scenarios

We further investigated differences in temperature across scenarios for a given warming level
by comparing the temperature standard deviation and 95th percentile under SSP245, SSP370,
and SSP585. For this analysis, warming levels were defined using the 21 year moving window
approach and the best subset of model/member/scenario combinations (described in section
6.1) which only includes one member per model. Only models that were available for both
scenarios were included in the comparisons. For each scenario and warming level combination,
the standard deviation of annual temperature was computed across models and the 21 years.
The 95th percentile of annual temperature was calculated similarly. We considered warming
levels of 1°C, 2°C, and 3°C.

Broad scale patterns of temperature standard deviation were similar across scenarios and
warming levels. The lowest standard deviations (<1°C) were found over oceans outside of polar
regions whereas the highest standard deviations (>4°C) were found in the coldest locations- the
Arctic, Antarctica and surrounding oceans, the Tibetan Plateau, and the Andes. Differences in
temperature standard deviation between the two scenarios were less than 0.2°C in almost all
locations for all three warming levels. Plots are shown below for the case of a 2°C warming level
(Figures 6 and 7).
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Figure 6. Standard deviation of annual temperature in a +2°C world under SSP245 (top),
SSP370 (middle) and SSP585 (bottom).
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Figure 7. Difference between scenarios in the standard deviation of annual temperature in a
+2°C world.

The global range of 95th percentile temperatures spans more than 80°C. In most locations and
warming levels, the difference in 95th percentile temperature between the scenarios is less than
1°C. The largest differences were located in polar regions. Plots are shown below for the case
of the 2°C warming level (Figure 8 and 9).
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Figure 8. 95th percentile of annual temperatures in a +2°C world under SSP245 (top), SSP370
(middle), and SSP585 (bottom).
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Figure 9. Difference between scenarios in the 95th percentile of annual temperatures in a +2°C
world.

5.1.2 Comparison of precipitation change across scenarios

As with warming, we investigated differences in precipitation change across scenarios for a
given warming level by first plotting maps of warming for each scenario in a 2°C world (Figure
10). We used the same warming years (based on the temperature window approach), ensemble
members, and model as above. Spatial patterns of annual precipitation were similar across
scenarios.

Using the same data, we calculated the absolute and percent range of annual precipitation at
each grid location (Figure 11). The absolute range was calculated as the wettest scenario at that
grid cell minus driest scenario at that grid cell. The percent range was calculated as the
absolute range divided by the scenario-mean. The largest absolute ranges of annual
precipitation (greater than 250 mm) were found over equatorial oceans. The largest percent
ranges of annual precipitation (greater than 30%) were found over the equatorial Pacific and
over areas with low annual precipitation such as N Africa and the Middle East. The range of
precipitation over land was typically less than 170 mm or 30%.
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Figure 10. Annual precipitation in a 2°C world under different scenarios. Calculations are based
only on the model (n=1) and members (n=5) all scenarios had in common and used a
temperature window approach to warming year identification.
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Figure 11. Range of annual precipitation across scenarios in a 2°C world. (Top) Absolute range
(max minus min). (Bottom) Percent range ((max minus min) divided by the scenario-mean).

As with temperature, we evaluated which scenarios contributed most to the spread in
precipitation (Figure 12). Again, SSP119 was the biggest contributor. Leaving out this scenario
reduced the global mean absolute precipitation range by almost 20%.
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Figure 12. Range (max minus min) of warming across scenarios in a 2°C world with the
scenario indicated on the x-axis left out. Lower y values indicate that leaving that scenario out
reduced the scenario spread in precipitation.

Plots comparing annual precipitation for each pair of scenarios supported the conclusion that
SSP119 had the largest contrasts with other scenarios (Figures 13 and 14). Amongst other
scenarios differences were small, especially over land areas (typically less than +/-75 mm or +/-
10%).

Figure 13. Difference in annual precipitation in a 2°C world (max minus min) for each pair of
scenarios using the temperature window approach.
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Figure 14. Percent difference in annual precipitation in a 2°C world (max minus min divided by
the all scenario mean) for each pair of scenarios using the temperature window approach.

The previous plots were replicated using the 21 year moving window approach to calculating
warming years (Figures 15 and 16). The absolute and percent differences in precipitation
between scenarios were broadly similar to those using the temperature window approach.
Differences for SSP126 were slightly larger due to the difference in ensemble size.
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Figure 15. Difference in annual precipitation in a 2°C world (max minus min) for each pair of
scenarios using the 21 year window approach. All scenarios use the same model and 5
members, except SSP126 for which only 3 members reached 2°C.
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Figure 16. Percent difference in annual precipitation in a 2°C world (max minus min divided by
the all scenario mean) for each pair of scenarios using the 21 year window approach. All
scenarios use the same model and 5 members, except SSP126 for which only 3 members
reached 2°C.

5.1.2.1 Comparison of annual precipitation standard deviation and 95th
percentile across scenarios

We further investigated differences in precipitation across scenarios for a given warming level
by comparing the standard deviation and 95th percentile of annual precipitation under SSP245,
SSP370, and SSP585. For this analysis, warming levels were defined using the 21 year moving
window approach and the best subset of model/member/scenario combinations (described in
section 6.1) which only includes one member per model. Only models that were available for
both scenarios were included in the comparisons. For each scenario and warming level
combination, the standard deviation of annual precipitation was computed across models and
the 21 years. The 95th percentile of annual precipitation was calculated similarly. We considered
warming levels of 1°C, 2°C, and 3°C.

Broad scale patterns of annual precipitation standard deviation were similar across scenarios
and warming levels. The spatial pattern of precipitation standard deviation was similar to the
spatial pattern of precipitation- the smallest standard deviations were generally found in drier
areas and the largest standard deviations (in excess of 800 mm) were found in the tropics and
large mountain ranges. Across warming levels, the difference in precipitation standard deviation
was less than 10% of the scenario/model/year mean annual precipitation in almost all locations.
Plots are shown below for the case of the 2°C warming level (Figures 17 and 18).
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Figure 17. Standard deviation of annual precipitation in a +2°C world under SSP245 (top),
SSP370 (middle), and SSP585 (bottom).
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Figure 18. Normalized difference between scenarios in the standard deviation of annual
precipitation in a +2°C world. Normalized difference was computed as the difference between
the two specified scenarios divided by the scenario-mean annual precipitation.

Spatial patterns of the 95th percentile of annual precipitation were very similar across scenarios
and warming levels. Differences across scenarios in 95th percentile precipitation were typically
less than 20% of the scenario/model/year mean annual precipitation, but did exceed 50% in
some cases. Plots are shown below for the case of the 2°C warming level (Figure 19 and 20).
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Figure 19. 95th percentile of annual precipitation in a +2°C world under SSP245 (top), SSP370
(middle), and SSP585 (bottom).
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Figure 20. Normalized difference between scenarios in the 95th percentile of annual
precipitation in a +2°C world. Normalized difference was computed as the difference between
the two specified scenarios divided by the scenario-mean annual precipitation.

5.2 Data availability considerations with respect to aggregation

Based on the literature review and analyses above, it appears appropriate to aggregate
warming levels across models, members, and/or scenarios, with a few caveats.

The first caveat concerns pathway dependence of the variable under consideration. As
discussed above, aggregation across scenarios is only appropriate for pathway independent
variables (see section 5.1 for further details on this and examples of pathway dependent and
pathway independent variables).

The second caveat concerns weighting. Several authors have indicated that when considering
aggregating across models, ensemble members, and/or scenarios it is important that equal
weighting is given (e.g. Seneviratne and Hauser (2020)). For example, some models were only
run for a subset of scenarios, so if all model/scenario combinations were included and given
equal weight then some scenarios would be represented by fewer data points and thus be less
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heavily weighted. A similar concern applies to the number of ensemble members available for
each model.

Figure 21 shows the availability of models for each scenario, restricted to those that provide
data for the full future time period (2015-2099) in the case of future scenarios. If all models and
all scenarios were used with equal weight there would be a lot more data points for some
scenarios than for others. Only two models provide data for every scenario, whereas 37 models
provide data for the historical and all tier 1 scenarios (SSP126, SSP245, SSP370, and
SSP585).

Figure 22 shows the availability of members for each model. Some models have a much larger
number of ensemble members available (e.g. ACCESS-ESM1-5). It is also clear that some
ensemble members are available from a larger number of models, however ensemble members
are defined differently for each model, so it is meaningless to restrict the ensemble members to
a particular label (e.g. r1i1p1f1).
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Figure 21. CMIP6 model/scenario availability based on Google Cloud data.
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Figure 22. CMIP6 model/member availability based on Google Cloud data.

6. Recommended warming year datasets

Based on the preceding discussion and analysis, we recommend the use of warming years from
the dataset of 37 models which provide data for every tier 1 scenario, using one member per
model, and the four tier 1 scenarios.

Selection of the ‘best’ ensemble member to use for each model is not straightforward in part
because member variant IDs (e.g. r1i1p1f1) do not mean the same thing from model to model.
After requiring that a member provide data for all tier 1 scenarios for the model of interest, we
selected the single member to use for each model based on the following criteria:

1. If r1i1p1f1 is available we used that member
2. If all available members end in i1p1f1, then we selected the lowest numbered realization

index
3. If all available members end in f2 and r1i1p1f2 is available, we used that member
4. If all available members include p2 and r1i1p2f1 is available, we used that member
5. For models where the choice was unclear (GISS-E2-1-G and GISS-E2-1-H), we

somewhat arbitrarily selected a member, with a preference for lower numbers

6.1 Best subset warming year table based on 21 year window approach

Using the above criteria we created a ‘best subset’ table of warming years using the 21 year
moving window approach. This dataset is designed to be aggregated across models, members,
and/or scenarios. The dataset represents a maximum of 3192 data points (37 models x 4
scenarios x 1 member x 21 years) for each warming level, providing a large sample size that
may be useful for analyses concerned with extreme values. Higher warming levels may not be
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reached by all model/member/scenario combinations, in which case the sample size would be
smaller (see section 6.3). A snapshot of the table is shown in Figure 23. The full table is
available upon request and the code for making the table is available in the GitHub repository
(make_warming_year_table_for_yr_window_best_subset.ipynb). The table includes warming
years for each combination of model/member/scenario and each 0.5°C warming level from 1°C
to 4.5°C. NaN values indicate that the warming level was not reached by 2099 for that particular
model/member/scenario combination.
The warming year table can be used in combination with the utility functions in the GitHub
repository (e.g. get_cmip6_data_at_warming_years()) to easily import data for different CMIP6
variables. For example, the script output_aggregated_warming_level_datasets.ipynb was used
to ingest all the warming years included in this table as well as the 10 prior and subsequent
years and average across all models, members, scenarios, and years at once for each warming
level. The outputs of this script are two netCDF files. One contains mean annual temperature
(tas) and the other contains mean annual precipitation, both of which are calculated at each
warming level on a 0.5° global grid. These datasets are available upon request.

Figure 23. Snapshot of the table encompassing the best subset of warming years based on the
21 year moving window approach.

6.2 Best subset warming year table based on temperature window approach

Using the same criteria as above for selecting models, members, and scenarios, we developed
a series of tables of warming years based on a 0.25°C temperature window (+/-0.25°C either
side of the target warming level). Each table contains warming years for a different global
warming level (1°C, 1.5°C, 2°C, 2.5°C, 3°C, 3.5°C, 4°C, and 4.5·°C). Model/member/scenario
combinations that do not reach the warming level are not included in the table. These tables are
available upon request. The files are labeled ‘0.5C window’ (i.e. the size of the full temperature
window, not the tolerance either side of the warming level) for consistency with the 21 year
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window approach. The code for creating these tables and other warming year tables based on
the temperature window approach is available in the GitHub repository
(make_warming_year_table_for_temperature_window_best_subset.ipynb). The temperature
window tables are organized slightly differently than the 21yr window table presented in section
6.1 since the number of years varies for each model/member/scenario combination. A snapshot
of the 4.5°C warming level table is shown in Figure 24.
The script output_aggregated_warming_level_datasets.ipynb was used to ingest all the
warming years included in these tables and average across all models, members, scenarios,
and years at once for each warming level. The outputs of this script are two netCDF files. One
contains mean annual temperature (tas) and the other contains mean annual precipitation, both
of which are calculated at each warming level on a 0.5° global grid. These datasets are
available upon request.

Figure 24. Snapshot of the warming year table for a warming level of 4.5°C based on the
temperature window approach.

6.3 Sample sizes for best subset warming year tables

The number of data points (i.e. the sample size) available in the warming year tables from the
two methods presented above (sections 6.1 and 6.2) varies by warming level since not all
model/member/scenario combinations reach all warming levels. In addition, for the 21 year
moving window approach each warming year in the table represents the midpoint of the 21 year
period, and therefore 21 data points, whereas each warming year in the temperature window
tables represents only one year. Table 4 lists the number of data points (aka sample size;
number of warming years across all models, members, and scenarios in the table) available for
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each approach and for each warming level evaluated. For lower warming levels (2.5°C or less),
the two approaches yield similar sample sizes. For higher warming levels (>2.5°C), the 21 year
window approach yields consistently larger sample sizes.

Warming Level 21 year window approach 0.25°C temperature window
approach

1°C 3108 2911

1.5°C 3003 3047

2°C 2730 2691

2.5°C 2289 2187

3°C 1848 1500

3.5°C 1491 1013

4°C 924 652

4.5°C 630 407

Table 4. Number of data points available in the best subset warming year tables for each
approach and warming level.

7. Data Availability
We are currently in the process of posting the datasets associated with this project to a publicly
accessible repository. In the meantime, the datasets are available upon request from the
Woodwell Risk Team (contact alute@woodwellclimate.org or cschwalm@woodwellclimate.org).

8. Code Availability
Code associated with this project is available on GitHub at
https://github.com/WoodwellRisk/Warming_levels.
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